
Assigning Addresses to Hosts and Routers, and DHCP

IP addresses are organized by the Internet Corporation for Assigned Names and Numbers (ICANN). An ISP can
request a block of addresses from ICANN. Then, an organization can also request a block of addresses from its ISP. A
block of addresses obtained from an ISP can be assigned over hosts, servers, and router interfaces by a network
manager.
Different method of assigning addresses to a host is called Dynamic Host Configuration Protocol (DHCP), whereby a
host is allocated an IP address automatically.

DHCP allows a host to learn its subnet mask, the address of its first-hop router, or even the address of other major
local servers.

DHCP is sometimes called a plug-and-play protocol, whereby hosts can join or leave a network without requiring
configuration by network managers.
The convenience of this method of address assignment gives DHCP multiple uses of IP addresses. If any ISP manager
does not have a sufficient number of IP addresses, DHCP is used to assign each of its connecting hosts a temporary
IP address.
If a host joins the network, the server assigns an available IP address; each time a host leaves, its address is included
in the pool of available addresses.
DHCP is especially useful in mobile IP, with mobile hosts joining and leaving an ISP frequently.
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Network Address Translation (NAT)

The idea behind NAT is that all the users and hosts of a private network do not need to have a globally unique
addresses. Instead, they can be assigned private and unique addresses within their own private networks, and a
NAT-enabled router that connects the private network to the outside world can translate these addresses to
globally unique addresses. The NAT-enabled router hides from the outside world the details of the private
network. The router acts as a single networking device with a single IP address to the outside world.

Example. Assume that a host with internal address 10.0.0.1 and port number 4527 in a private network requests
a connection to a server with IP address 144.55.34.2 and arbitrary port number 3843, which resides in a
different country. Suppose that the output port of the connecting NAT router is assigned IP address 197.36.32.4.

Solution. To set up this connection, the host sends its request with source address 10.0.0.1,4527 to the NAT
router. The router "translates" this address in its NAT routing table by changing the arbitrary port number from
4527 to an official one of 5557 and changing the internal IP address 10.0.0.1 to its own port IP address,
197.36.32.4. The router then makes the connection request to site 144.55.34.2,3843, using address
197.36.32.4,5557. When the router receives the response from the remote site, the router does the reverse
translation and delivers the response to host 10.0.0.1. Although NAT protocol solves the shortage of IP addresses
in small communities, it has a major drawback of avoiding the assignment of a unique IP address to every
networking component
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Routing algorithm goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers

 path: sequence of routers packets 
traverse from given initial source host 
to final destination host

 “good”: least “cost”, “fastest”, “least 
congested”

 routing: a “top-10” networking 
challenge!
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification

global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Network layer: “control plane” roadmap

 network management, 
configuration 
• SNMP

• NETCONF/YANG

 introduction

 routing protocols
 link state

 distance vector

 intra-ISP routing: OSPF

 routing among ISPs: BGP

 SDN control plane

 Internet Control Message 
Protocol 



Dijkstra’s link-state routing algorithm

 centralized: network topology, link 
costs known to all nodes
• accomplished via “link state broadcast” 

• all nodes have same info

 computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

 iterative: after k iterations, know 
least cost path to k destinations

 Ca,b: direct link cost from 
node a to b;  = ∞ if not direct 
neighbors

 D(a): current estimate of cost 
of least-cost-path from source 
to destination a

 p(a): predecessor node along 
path from source to a

 N': set of nodes whose least-
cost-path definitively known

notation



Dijkstra’s link-state routing algorithm
1  Initialization:
2   N' = {u}                               /* compute least cost path from u to all other nodes */

3    for all nodes v
4      if v adjacent to u /* u initially knows direct-path-cost only to  direct neighbors    */

5          then D(v) = cu,v /* but may not be minimum cost!                                                    */

6      else D(v) = ∞
7 

8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N'

Find w not in N' such that D(w) is a minimum 
add w to N'
update D(v) for all v adjacent to w and not in N' : 

D(v) = min ( D(v),  D(w) + cw,v )
/* new least-path-cost to v is either old least-cost-path to v or known 

least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example
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Initialization (step 0): 
For all a: if a adjacent to u then D(a) = cu,a
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Dijkstra’s algorithm: an example
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 

D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 

D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  



Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 

D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Dijkstra’s algorithm: an example
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 
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Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: an example
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Dijkstra’s algorithm: another example
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Dijkstra’s algorithm: discussion

algorithm complexity: n nodes

 each of n iteration: need to check all nodes, w, not in N

 n(n+1)/2 comparisons: O(n2) complexity

 more efficient implementations possible: O(nlogn)

message complexity:

 each router must broadcast its link state information to other n routers 

 efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 
broadcast message from one source

 each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible
 when  link costs depend on traffic volume, route oscillations possible
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Let Dx(y): cost of least-cost path from x to y.

Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

cu,x + Dx(z),

cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

1 + 3,

5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)



Distance vector algorithm 

key idea: 
 from time-to-time, each node sends its own distance vector estimate 

to neighbors

 under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

 when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  

iterative, asynchronous: each local 
iteration caused by: 

 local link cost change 

 DV update message from neighbor

wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes

 neighbors then notify their 
neighbors – only if necessary

 no notification received, no 
actions taken!

recompute my DV estimates 
using DV received from neighbor

if my DV to any destination 
has changed, send my new DV 
my neighbors, else do nothing. 
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Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n2) messages sent  

DV: exchange between neighbors; 
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 

• router can advertise incorrect link cost

• each router computes only its own
table

DV:

• DV router can advertise incorrect path
cost (“I have a really low-cost path to 
everywhere”): black-holing

• each router’s DV is used by others: 
error propagate thru network


