
Assigning Addresses to Hosts and Routers, and DHCP

IP addresses are organized by the Internet Corporation for Assigned Names and Numbers (ICANN). An ISP can
request a block of addresses from ICANN. Then, an organization can also request a block of addresses from its ISP. A
block of addresses obtained from an ISP can be assigned over hosts, servers, and router interfaces by a network
manager.
Different method of assigning addresses to a host is called Dynamic Host Configuration Protocol (DHCP), whereby a
host is allocated an IP address automatically.

DHCP allows a host to learn its subnet mask, the address of its first-hop router, or even the address of other major
local servers.

DHCP is sometimes called a plug-and-play protocol, whereby hosts can join or leave a network without requiring
configuration by network managers.
The convenience of this method of address assignment gives DHCP multiple uses of IP addresses. If any ISP manager
does not have a sufficient number of IP addresses, DHCP is used to assign each of its connecting hosts a temporary
IP address.
If a host joins the network, the server assigns an available IP address; each time a host leaves, its address is included
in the pool of available addresses.
DHCP is especially useful in mobile IP, with mobile hosts joining and leaving an ISP frequently.

24DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (MATERIAL FROM TEXT BOOK OF
AUTHORS NADER MIR, FOROUZAN)

Assigning Addresses to Hosts and Routers, and DHCP

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (MATERIAL FROM TEXT BOOK OF
AUTHORS NADER MIR, FOROUZAN) 25

Network Address Translation (NAT)

The idea behind NAT is that all the users and hosts of a private network do not need to have a globally unique
addresses. Instead, they can be assigned private and unique addresses within their own private networks, and a
NAT-enabled router that connects the private network to the outside world can translate these addresses to
globally unique addresses. The NAT-enabled router hides from the outside world the details of the private
network. The router acts as a single networking device with a single IP address to the outside world.

Example. Assume that a host with internal address 10.0.0.1 and port number 4527 in a private network requests
a connection to a server with IP address 144.55.34.2 and arbitrary port number 3843, which resides in a
different country. Suppose that the output port of the connecting NAT router is assigned IP address 197.36.32.4.

Solution. To set up this connection, the host sends its request with source address 10.0.0.1,4527 to the NAT
router. The router "translates" this address in its NAT routing table by changing the arbitrary port number from
4527 to an official one of 5557 and changing the internal IP address 10.0.0.1 to its own port IP address,
197.36.32.4. The router then makes the connection request to site 144.55.34.2,3843, using address
197.36.32.4,5557. When the router receives the response from the remote site, the router does the reverse
translation and delivers the response to host 10.0.0.1. Although NAT protocol solves the shortage of IP addresses
in small communities, it has a major drawback of avoiding the assignment of a unique IP address to every
networking component

26DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (MATERIAL FROM TEXT BOOK OF
AUTHORS NADER MIR, FOROUZAN)

Network Layer:
Control Plane
 introduction
 routing algorithms

 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message Protocol
 Network management, configuration

COMPSCI 453 Computer Networks
Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook:

Computer Networking: A Top-
Down Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020

http://gaia.cs.umass.edu/kurose_ross

Available at: http://gaia.cs.umass.edu/kurose_ross/videos/5/

Routing algorithm goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers

 path: sequence of routers packets
traverse from given initial source host
to final destination host

 “good”: least “cost”, “fastest”, “least
congested”

 routing: a “top-10” networking
challenge!

Routing algorithm
mobile network

enterprise
network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Graph abstraction: link costs

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

Network layer: “control plane” roadmap

 network management,
configuration
• SNMP

• NETCONF/YANG

 introduction

 routing protocols
 link state

 distance vector

 intra-ISP routing: OSPF

 routing among ISPs: BGP

 SDN control plane

 Internet Control Message
Protocol

Dijkstra’s link-state routing algorithm

 centralized: network topology, link
costs known to all nodes
• accomplished via “link state broadcast”

• all nodes have same info

 computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

 iterative: after k iterations, know
least cost path to k destinations

 Ca,b: direct link cost from
node a to b; = ∞ if not direct
neighbors

 D(a): current estimate of cost
of least-cost-path from source
to destination a

 p(a): predecessor node along
path from source to a

 N': set of nodes whose least-
cost-path definitively known

notation

Dijkstra’s link-state routing algorithm
1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */

3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */

5 then D(v) = cu,v /* but may not be minimum cost! */

6 else D(v) = ∞
7

8 Loop
9
10
11
12
13
14
15 until all nodes in N'

Find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :

D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known

least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

D(w),p(w)

5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
For all a: if a adjacent to u then D(a) = cu,a

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2

D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4

D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3

D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

Dijkstra’s algorithm: an example

Step

0

1

2

3

4

5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)

5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

uxyvw 4,y
uxyvwz

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

Dijkstra’s algorithm: an example

u

yx

wv

z

2

2

1
3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
z

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

Dijkstra’s algorithm: another example

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2

3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
 construct least-cost-path tree by tracing predecessor nodes

 ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

algorithm complexity: n nodes

 each of n iteration: need to check all nodes, w, not in N

 n(n+1)/2 comparisons: O(n2) complexity

 more efficient implementations possible: O(nlogn)

message complexity:

 each router must broadcast its link state information to other n routers

 efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a
broadcast message from one source

 each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible
 when link costs depend on traffic volume, route oscillations possible

a

d

c

b

1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1

0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00

1+e 1

 sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network Layer:
Control Plane
 introduction
 routing algorithms

 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message Protocol
 Network management, configuration

COMPSCI 453 Computer Networks
Professor Jim Kurose

College of Information and Computer Sciences
University of Massachusetts

Class textbook:

Computer Networking: A Top-
Down Approach (8th ed.)

J.F. Kurose, K.W. Ross
Pearson, 2020

http://gaia.cs.umass.edu/kurose_ross

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Let Dx(y): cost of least-cost path from x to y.

Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),

cu,x + Dx(z),

cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,

1 + 3,

5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-
cost path to destination (z)

Distance vector algorithm

key idea:
 from time-to-time, each node sends its own distance vector estimate

to neighbors

 under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

 when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

iterative, asynchronous: each local
iteration caused by:

 local link cost change

 DV update message from neighbor

wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

 neighbors then notify their
neighbors – only if necessary

 no notification received, no
actions taken!

recompute my DV estimates
using DV received from neighbor

if my DV to any destination
has changed, send my new DV
my neighbors, else do nothing.

Network Layer: 5-28

∞∞ ∞

∞∞ ∞

fr
o

m

cost to x
y z

x 0 2 7

y

z

fr
o

m
fr

o
m

fr
o

m

cost to

x y z

cost to
x y z

7 1 0

x ∞ ∞ ∞

y 2 0 1

z ∞∞ ∞

x ∞∞∞

y ∞∞∞
z

x 0

y.2
z. 7

0 1

1 0

x z
12

7

y

node x table

node y table

node z table
cost to x

y z

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

2 3

time

CS755
3-29

x 0 2 7

y ∞∞ ∞
z ∞∞ ∞

fr
o

m

cost to
x y z

fr
o

m
fr

o
m

fr
o

m

cost to

fr
o

m

cost to

∞∞

cost to
x y z

fr
o

m

cost to

fr
o

m

cost to

fr
o

m

cost to

fr
o

m

cost to

7 1 0

cost to
x y z

x ∞ ∞ ∞

y 2 0 1
z ∞

x ∞∞ ∞

y ∞ ∞ ∞
z

2 0

7 1

x y z

x 0 2 3

y. 1
z. 0

7 1

x y z

x 0 2 7

y 2 0 1
z 0

x y z

x 0 2 7

y 2 0 1
z 3 1 0

2 0

3 1

x y z

x 0 2 3

y. 1
z. 0

x y z

x 0 2 3

y 2 0 1

z 3 1 0

x y z

x 0 2 3

y 2 0 1
z 3 1 0

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

time

CS755
3-30

Comparison of LS and DV algorithms

message complexity
LS: n routers, O(n2) messages sent

DV: exchange between neighbors;
convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:

• router can advertise incorrect link cost

• each router computes only its own
table

DV:

• DV router can advertise incorrect path
cost (“I have a really low-cost path to
everywhere”): black-holing

• each router’s DV is used by others:
error propagate thru network

