
Chapter 4
Network Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:
 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2013
J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer 4-1

Network Layer 4-2

4.6 routing in the Internet
 RIP

 OSPF

 BGP

Chapter 4: outline

Network Layer 4-3

4.1 introduction

4.2 virtual circuit and
datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol
 datagram format

 IPv4 addressing

 ICMP

 IPv6

4.5 routing algorithms
 link state

 distance vector

 hierarchical routing

4.6 routing in the Internet
 RIP

 OSPF

 BGP

4.7 broadcast and multicast
routing

Chapter 4: outline

Network Layer 4-4

Intra-AS Routing

 also known as interior gateway protocols (IGP)

 most common intra-AS routing protocols:

 RIP: Routing Information Protocol

 OSPF: Open Shortest Path First

 IGRP: Interior Gateway Routing Protocol
(Cisco proprietary)

Network Layer 4-5

RIP (Routing Information Protocol)

 included in BSD-UNIX distribution in 1982

 distance vector algorithm
 distance metric: # hops (max = 15 hops), each link has cost 1

 DVs exchanged with neighbors every 30 sec in response message (aka
advertisement)

 each advertisement: list of up to 25 destination subnets (in IP addressing
sense)

DC

BA

u v

w

x

y
z

subnet hops

u 1

v 2

w 2

x 3

y 3

z 2

from router A to destination subnets:

Network Layer 4-6

RIP: example

destination subnet next router # hops to dest

w A 2

y B 2

z B 7

x -- 1
…. ….

routing table in router D

w x y

z

A

C

D B

Network Layer 4-7

w x y

z

A

C

D B

destination subnet next router # hops to dest

w A 2

y B 2

z B 7

x -- 1
…. ….

routing table in router D

A 5

dest next hops
w - 1
x - 1
z C 4
…. … ...

A-to-D advertisement

RIP: example

Network Layer 4-8

RIP: link failure, recovery

if no advertisement heard after 180 sec -->
neighbor/link declared dead
 routes via neighbor invalidated

 new advertisements sent to neighbors

 neighbors in turn send out new advertisements (if tables
changed)

 link failure info quickly (?) propagates to entire net

 poison reverse used to prevent ping-pong loops (infinite
distance = 16 hops)

Network Layer 4-9

RIP table processing

 RIP routing tables managed by application-level
process called route-d (daemon)

 advertisements sent in UDP packets, periodically
repeated

physical

link

network forwarding

(IP) table

transport

(UDP)

routed

physical

link

network

(IP)

transprt

(UDP)

routed

forwarding

table

Network Layer 4-10

OSPF (Open Shortest Path First)

 “open”: publicly available

 uses link state algorithm
 LS packet dissemination

 topology map at each node

 route computation using Dijkstra’s algorithm

 OSPF advertisement carries one entry per neighbor

 advertisements flooded to entire AS
 carried in OSPF messages directly over IP (rather than

TCP or UDP

 IS-IS routing protocol: nearly identical to OSPF

Network Layer 4-11

OSPF “advanced” features (not in RIP)

 security: all OSPF messages authenticated (to prevent
malicious intrusion)

 multiple same-cost paths allowed (only one path in
RIP)

 for each link, multiple cost metrics for different TOS
(e.g., satellite link cost set “low” for best effort ToS;
high for real time ToS)

 integrated uni- and multicast support:

 Multicast OSPF (MOSPF) uses same topology data
base as OSPF

 hierarchical OSPF in large domains.

Network Layer 4-12

Hierarchical OSPF

boundary router

backbone router

area 1

area 2

area 3

backbone

area
border
routers

internal
routers

Network Layer 4-13

 two-level hierarchy: local area, backbone.

 link-state advertisements only in area

 each nodes has detailed area topology; only know
direction (shortest path) to nets in other areas.

 area border routers: “summarize” distances to nets in
own area, advertise to other Area Border routers.

 backbone routers: run OSPF routing limited to
backbone.

 boundary routers: connect to other AS’s.

Hierarchical OSPF

Network Layer 4-14

Internet inter-AS routing: BGP

 BGP (Border Gateway Protocol): the de facto
inter-domain routing protocol
 “glue that holds the Internet together”

 BGP provides each AS a means to:

 eBGP: obtain subnet reachability information from
neighboring ASs.

 iBGP: propagate reachability information to all AS-
internal routers.

 determine “good” routes to other networks based on
reachability information and policy.

 allows subnet to advertise its existence to rest of
Internet: “I am here”

Network Layer 4-15

BGP basics

 when AS3 advertises a prefix to AS1:
 AS3 promises it will forward datagrams towards that prefix

 AS3 can aggregate prefixes in its advertisement

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

 BGP session: two BGP routers (“peers”) exchange BGP
messages:
 advertising paths to different destination network prefixes (“path vector”

protocol)

 exchanged over semi-permanent TCP connections

BGP
message

Network Layer 4-16

BGP basics: distributing path information

AS3

AS2

3b
3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

 using eBGP session between 3a and 1c, AS3 sends prefix
reachability info to AS1.
 1c can then use iBGP do distribute new prefix info to all routers

in AS1

 1b can then re-advertise new reachability info to AS2 over 1b-to-
2a eBGP session

 when router learns of new prefix, it creates entry for
prefix in its forwarding table.

eBGP session

iBGP session

Network Layer 4-17

Path attributes and BGP routes

 advertised prefix includes BGP attributes
 prefix + attributes = “route”

 two important attributes:
 AS-PATH: contains ASs through which prefix

advertisement has passed: e.g., AS 67, AS 17

 NEXT-HOP: indicates specific internal-AS router to next-
hop AS. (may be multiple links from current AS to next-
hop-AS)

 gateway router receiving route advertisement uses
import policy to accept/decline
 e.g., never route through AS x

 policy-based routing

Network Layer 4-18

BGP route selection

 router may learn about more than 1 route to
destination AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH

3. closest NEXT-HOP router: hot potato routing

4. additional criteria

Network Layer 4-19

BGP messages

 BGP messages exchanged between peers over TCP
connection

 BGP messages:

 OPEN: opens TCP connection to peer and authenticates
sender

 UPDATE: advertises new path (or withdraws old)

 KEEPALIVE: keeps connection alive in absence of
UPDATES; also ACKs OPEN request

 NOTIFICATION: reports errors in previous msg; also
used to close connection

Putting it Altogether:

How Does an Entry Get Into a

Router’s Forwarding Table?

 Answer is complicated!

 Ties together hierarchical routing (Section 4.5.3)
with BGP (4.6.3) and OSPF (4.6.2).

 Provides nice overview of BGP!

1

23

Dest IP

routing algorithms

local forwarding table

prefix output port

138.16.64/22

124.12/16

212/8

…………..

3

2

4

…

How does entry get in forwarding table?

entry

Assume prefix is

in another AS.

High-level overview

1. Router becomes aware of prefix

2. Router determines output port for prefix

3. Router enters prefix-port in forwarding table

How does entry get in forwarding table?

Router becomes aware of prefix

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

BGP
message

 BGP message contains “routes”

 “route” is a prefix and attributes: AS-PATH, NEXT-
HOP,…

 Example: route:

 Prefix:138.16.64/22 ; AS-PATH: AS3 AS131 ;
NEXT-HOP: 201.44.13.125

Router may receive multiple routes

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

BGP
message

 Router may receive multiple routes for same prefix

 Has to select one route

 Router selects route based on shortest AS-PATH

Select best BGP route to prefix

 Example:

 AS2 AS17 to 138.16.64/22

 AS3 AS131 AS201 to 138.16.64/22

 What if there is a tie? We’ll come back to that!

select

Find best intra-route to BGP route
 Use selected route’s NEXT-HOP attribute

 Route’s NEXT-HOP attribute is the IP address of the
router interface that begins the AS PATH.

 Example:

 AS-PATH: AS2 AS17 ; NEXT-HOP: 111.99.86.55

 Router uses OSPF to find shortest path from 1c to
111.99.86.55

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

111.99.86.55

Router identifies port for route

 Identifies port along the OSPF shortest path

 Adds prefix-port entry to its forwarding table:
 (138.16.64/22 , port 4)

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

router

port

1

2 3
4

Hot Potato Routing

 Suppose there two or more best inter-routes.

 Then choose route with closest NEXT-HOP
 Use OSPF to determine which gateway is closest

 Q: From 1c, chose AS3 AS131 or AS2 AS17?

 A: route AS3 AS201 since it is closer

AS3

AS2

3b

3c

3a

AS1

1c

1a
1d

1b

2a
2c

2b

other

networks
other

networks

Summary

1. Router becomes aware of prefix
 via BGP route advertisements from other routers

2. Determine router output port for prefix
 Use BGP route selection to find best inter-AS route

 Use OSPF to find best intra-AS route leading to best
inter-AS route

 Router identifies router port for that best route

3. Enter prefix-port entry in forwarding table

How does entry get in forwarding table?

Network Layer 4-30

BGP routing policy

 A,B,C are provider networks

 X,W,Y are customer (of provider networks)

 X is dual-homed: attached to two networks

 X does not want to route from B via X to C

 .. so X will not advertise to B a route to C

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Network Layer 4-31

BGP routing policy (2)

 A advertises path AW to B

 B advertises path BAW to X

 Should B advertise path BAW to C?
 No way! B gets no “revenue” for routing CBAW since neither W nor

C are B’s customers

 B wants to force C to route to w via A

 B wants to route only to/from its customers!

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Network Layer 4-32

Why different Intra-, Inter-AS routing ?

policy:
 inter-AS: admin wants control over how its traffic

routed, who routes through its net.

 intra-AS: single admin, so no policy decisions needed

scale:
 hierarchical routing saves table size, reduced update

traffic

performance:

 intra-AS: can focus on performance

 inter-AS: policy may dominate over performance

Subject Name: Data Communication & Networking
Subject Code: CS44

Credits: 4:0:0

M.S. Ramaiah Institute of Technology
(Autonomous Institute, Affiliated to VTU)

Department of Computer Science and Engineering

Addressing
MAC Address IP Address Port Numbers

Layer Data Link Network Layer Transport Layer

Bits EUI-48 bits
EUI-64 bits

IPv4- 32bits
IPv6- 128 bits

16 bits

Representation Hexadecimal
Ex:-
E8-D8-D1-E9-49-5B

Dotted Decimal Notation
103.109.109.98

Decimal
52751

Uniqueness Universally Unique Universally Unique Unique within host

Address Change from
network to network

No Yes N/A

Allotment of Address NIC Manufacturer
(IEEE)

Internet Service Provider
(IANA –Internet Assigned
Numbers Authority)

Operating System

Private IP and Public IP Standard Port Numbers
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER

NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 2

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

Transport Layer: 3-3DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Transport layer: overview

 understand principles
behind transport layer
services:

• multiplexing, demultiplexing
• reliable data transfer
• flow control
• congestion control

 learn about Internet transport
layer protocols:

• UDP: connectionless transport
• TCP: connection-oriented reliable

transport
• TCP congestion control

Transport Layer: 3-4DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Transport layer: roadmap

 Transport-layer services
Multiplexing and demultiplexing
 Connectionless transport: UDP
 Connection-oriented transport: TCP
 TCP congestion control

Transport Layer: 3-5DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Transport services and protocols
 provide logical communication

between application processes
running on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

 transport protocols actions in end
systems:
• sender: breaks application messages

into segments, passes to network layer
• receiver: reassembles segments into

messages, passes to application layer
 two transport protocols available to

Internet applications
• TCP, UDP

Transport Layer: 3-6DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions
Sender:

app. msg passes an application-layer
message
 determines segment

header fields values
 creates segment
 passes segment to IP

transport ThTh app. msg

Transport Layer: 3-7DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

physical
link

network (IP)

application

physical
link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg extracts application-layer
message

 checks header values
 receives segment from IP

Th app. msg

 demultiplexes message up
to application via socket

Transport Layer: 3-8DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Two principal Internet transport protocols
mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physicalTCP: Transmission Control Protocol

• reliable, in-order delivery
• congestion control
• flow control
• connection setup
UDP: User Datagram Protocol

• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

 services not available:
• delay guarantees
• bandwidth guarantees

Transport Layer: 3-9DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Chapter 3: roadmap

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
TCP congestion control

Transport Layer: 3-10DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msg

Transport Layer: 3-11DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHt

HTTP msg

Transport Layer: 3-12DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHt

HTTP msgHtHn

HTTP msg

Transport Layer: 3-13DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client

HTTP msgHtHn

Transport Layer: 3-14DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

transport

physical
link

network transport

application

physical

link
network

transport

application

physical
link

network

HTTP server
client1 client2

P-client1 P-client2

Transport Layer: 3-15DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

Transport Layer: 3-16DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

How demultiplexing works
 host receives IP datagrams

• each datagram has source IP
address, destination IP address

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Transport Layer: 3-17DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Connectionless demultiplexing
Recall:
 when creating socket, must

specify host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

when receiving host receives
UDP segment:

• checks destination port # in
segment

• directs UDP segment to
socket with that port #

 when creating datagram to
send into UDP socket, must
specify

• destination IP address
• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

Transport Layer: 3-18DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Connectionless demultiplexing: an example
DatagramSocket
serverSocket = new
DatagramSocket
(6428);

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

DatagramSocket mySocket1 =
new DatagramSocket (5775);

DatagramSocket mySocket2 =
new DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer: 3-19DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Connection-oriented demultiplexing
 TCP socket identified by

4-tuple:
• source IP address
• source port number
• dest IP address
• dest port number

 server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple
• each socket associated with

a different connecting client
 demux: receiver uses all

four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-20DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Connection-oriented demultiplexing: example

transport

application

physical
link

network

P1
transport

application

physical
link

P4

transport

application

physical
link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

Transport Layer: 3-21DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Summary
 Multiplexing, demultiplexing: based on segment, datagram

header field values
 UDP: demultiplexing using destination port number (only)
 TCP: demultiplexing using 4-tuple: source and destination IP

addresses, and port numbers
 Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-22DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Chapter 3: roadmap

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
TCP congestion control

Transport Layer: 3-23DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP: User Datagram Protocol
 “no frills,” “bare bones”

Internet transport protocol
 “best effort” service, UDP

segments may be:
• lost
• delivered out-of-order to app

 no connection
establishment (which can
add RTT delay)
 simple: no connection state

at sender, receiver
 small header size
 no congestion control
 UDP can blast away as fast as

desired!
 can function in the face of

congestion

Why is there a UDP?

 connectionless:
• no handshaking between UDP

sender, receiver
• each UDP segment handled

independently of others
Transport Layer: 3-24DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER

NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP: User Datagram Protocol

 UDP use:
 streaming multimedia apps (loss tolerant, rate sensitive)
 DNS
 SNMP

 if reliable transfer needed over UDP:
 add needed reliability at application layer
 add congestion control at application layer

Transport Layer: 3-25DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP: User Datagram Protocol [RFC 768]

Transport Layer: 3-26DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

transport
(UDP)

physical
link

network (IP)

application

Transport Layer: 3-27DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
SNMP msg passes an application-layer

message
 determines UDP segment

header fields values
 creates UDP segment
 passes segment to IP

UDPhUDPh SNMP msg

Transport Layer: 3-28DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

SNMP serverSNMP client

transport
(UDP)

physical
link

network (IP)

application

transport
(UDP)

physical
link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

SNMP msg
 extracts application-layer

message

 checks UDP checksum
header value

 receives segment from IP

UDPh SNMP msg
 demultiplexes message up

to application via socket

Transport Layer: 3-29DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

Transport Layer: 3-30DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)=

Transport Layer: 3-31DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

UDP checksum

sender:
 treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers
 checksum: addition (one’s

complement sum) of segment
content
 checksum value put into

UDP checksum field

receiver:
 compute checksum of received

segment
 check if computed checksum equals

checksum field value:
• Not equal - error detected
• Equal - no error detected. But maybe

errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Transport Layer: 3-32DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Transport Layer: 3-33DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Checksum simple example:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 34

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1
1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Transport Layer: 3-35DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Problems on Checksum

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 36

Problems on Checksum (contd.)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 37

Summary: UDP

 “no frills” protocol:
• segments may be lost, delivered out of order
• best effort service: “send and hope for the best”
 UDP has its plusses:

• no setup/handshaking needed (no RTT incurred)
• can function when network service is compromised
 build additional functionality on top of UDP in application layer

(e.g., HTTP/3)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 38

Chapter 3: roadmap
Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
• segment structure
• Reliable Data Transfer
• flow control
• connection management

TCP congestion control

Transport Layer: 3-39DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

 cumulative ACKs
 pipelining:

• TCP congestion and flow control
set window size

 connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

 flow controlled:
• sender will not overwhelm receiver

 point-to-point:
• one sender, one receiver

 reliable, in-order byte
steam:
• no “message boundaries"

 full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-40DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number
segment seq #: counting
bytes of data into bytestream
(not segments!)

application
data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer
PU

Transport Layer: 3-41DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Push Flag

TCP sequence numbers, ACKs
Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Acknowledgements:
• seq # of next byte expected

from other side
• cumulative ACK

Q: how receiver handles out-of-
order segments
• A: TCP spec doesn’t say, - up

to implementor
Transport Layer: 3-42DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER

NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-43DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP round trip time, timeout

Q: how to set TCP timeout
value?
 longer than RTT, but RTT varies!
 too short: premature timeout,

unnecessary retransmissions
 too long: slow reaction to

segment loss

Q: how to estimate RTT?
SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just current
SampleRTT

Transport Layer: 3-44DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP round trip time, timeout
EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 exponential weighted moving average (EWMA)
 influence of past sample decreases exponentially fast
 typical value: = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
Transport Layer: 3-45DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER

NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP round trip time, timeout
 timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin
TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-46DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Chapter 3: roadmap
Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
• segment structure
• Reliable Data Transfer
• flow control
• connection management

TCP congestion control

Transport Layer: 3-47DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP Sender (simplified)

event: data received from
application
 create segment with seq #
 seq # is byte-stream number

of first data byte in segment
 start timer if not already

running
• think of timer as for oldest

unACKed segment
• expiration interval:
TimeOutInterval

event: timeout
 retransmit segment that

caused timeout
 restart timer

event: ACK received
 if ACK acknowledges

previously unACKed segments
• update what is known to be

ACKed
• start timer if there are still

unACKed segments

Transport Layer: 3-48DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 49

Fig: TCP
Simplified
Sender

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100
X

ACK=100

tim
eo

ut

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

tim
eo

ut

ACK=100
ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

send cumulative
ACK for 120

Transport Layer: 3-50DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-51DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Doubling timeout interval : when
the acknowledgment for sent
data is not received on time, TCP
sender doubles the timeout
interval.

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer: 3-52DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP fast retransmit
Host BHost A

tim
eo

ut

X

Seq=100, 20 bytes of data
Receipt of three duplicate ACKs

indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
 likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Transport Layer: 3-53DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 54

Fig: TCP with Fast Retransmit

Chapter 3: roadmap
Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Principles of reliable data transfer
Connection-oriented transport: TCP
• segment structure
• Reliable Data Transfer
• flow control
• connection management

Principles of congestion control
TCP congestion control

Transport Layer: 3-55DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP flow control
 TCP receiver “advertises” free buffer

space in rwnd field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)
• many operating systems autoadjust
RcvBuffer

 sender limits amount of unACKed
(“in-flight”) data to received rwnd

 guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-56DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TRANSPORT LAYER 3-57

TCP Flow Control
receive side of TCP
connection has a receive
buffer:

speed-matching service:
matching the send rate to the
receiving app’s drain rate app process may be slow

at reading from buffer

sender won’t overflow
receiver’s buffer by
transmitting too much,
too fast

flow control

TRANSPORT LAYER 3-58

TCP Flow control: how it works
At Sender side:

At Receiver side:

TCP connection management
before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing to establish connection)
 agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server,client

application

network

Socket clientSocket =
newSocket("hostname","port number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer: 3-59DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-60DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TRANSPORT LAYER 3-61

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

initialize TCP variables:
◦ seq. #s
◦ buffers, flow control info (e.g.
RcvWindow)

client: connection initiator
Socket clientSocket = new

Socket("hostname","port
number");

server: contacted by client
Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN
segment to server
◦ specifies initial seq #
◦ no data

Step 2: server host receives SYN, replies
with SYNACK segment

◦ server allocates buffers
◦ specifies server initial seq. #

Step 3: client receives SYNACK, replies
with ACK segment, which may contain
data

TRANSPORT LAYER 3-62

TCP Connection Management (contd.)
Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to server

Step 2: server receives FIN, replies
with ACK. Closes connection, sends
FIN.

client server

close

close

closed
tim

ed
 w

ai
t

TRANSPORT LAYER 3-63

TCP Connection Management (contd.)
Step 3: client receives FIN, replies
with ACK.

◦ Enters “timed wait” - will
respond with ACK to received
FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification, can
handle simultaneous FINs.

client server

closing

closing

closed
tim

ed
 w

ai
t

closed

Transport Layer: 3-64

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state
ESTABESTAB

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Closing a TCP connection

 client, server each close their side of connection
• send TCP segment with FIN bit = 1

 respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled

Transport Layer: 3-65DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TRANSPORT LAYER 3-66

TCP Connection Management (contd.)

TCP client
lifecycle

TCP server
lifecycle

Chapter 3: roadmap

Transport-layer services
Multiplexing and demultiplexing
Connectionless transport: UDP
Connection-oriented transport: TCP
Principles of congestion control
TCP congestion control

Transport Layer: 3-67DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Congestion:
 informally: “too many sources sending too much data too fast for

network to handle”
manifestations:

• long delays (queueing in router buffers)
• packet loss (buffer overflow at routers)

 different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender
too fast for one receiver

Transport Layer: 3-68DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP congestion control: AIMD
 approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth
behavior: probing

for bandwidth

TC
P

se
nd

er
 S

en
di

ng
 ra

te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase
cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-69DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP AIMD: more
Multiplicative decrease detail: sending rate is
 Cut in half on loss detected by triple duplicate ACK (TCP Reno)
 Cut to 1 MSS (maximum segment size) when loss detected by

timeout (TCP Tahoe)

Why AIMD?
 AIMD – a distributed, asynchronous algorithm – has been

shown to:
• optimize congested flow rates network wide!
• have desirable stability properties

Transport Layer: 3-70DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP congestion control: details

 TCP sender limits transmission:
 cwnd is dynamically adjusted in response to observed

network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:
 roughly: send cwnd bytes,

wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd
RTT bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-71DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP slow start
when connection begins,

increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd

for every ACK received

Host A Host B

R
TT

time

 summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-72DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
 variable ssthresh
 on loss event, ssthresh is set to

1/2 of cwnd just before loss event

X

Transport Layer: 3-73DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 74

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 75

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 76

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 77

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 78

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 79

Summary: TCP congestion control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer: 3-80DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

TCP fairness
Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

Transport Layer: 3-81DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Q: is TCP Fair?
Example: two competing TCP sessions:
 additive increase gives slope of 1, as throughput increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized
assumptions:
 same RTT
 fixed number of sessions

only in congestion
avoidance

Is TCP fair?

Transport Layer: 3-82DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Fairness: must all network apps be “fair”?
Fairness and UDP
multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control
 instead use UDP:

• send audio/video at constant rate,
tolerate packet loss

 there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections
 application can open multiple

parallel connections between two
hosts
web browsers do this , e.g., link of

rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10
• new app asks for 11 TCPs, gets R/2

Transport Layer: 3-83DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Chapter 3: summary

Transport Layer: 3-84

 principles behind transport
layer services:
• multiplexing, demultiplexing
• reliable data transfer
• flow control
• congestion control
 instantiation, implementation

in the Internet
• UDP
• TCP

Up next:
 leaving the network

“edge” (application,
transport layers)
 into the network “core”
 two network-layer

chapters:
• data plane
• control plane

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020)

Thank you

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (SLIDES USED ARE FROM COMPUTER
NETWORKING: A TOP-DOWN APPROACH 8TH EDIITION– JIM KUROSE, KEITH ROSS, PEARSON 2020) 85

